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Abstract

In this talk we discuss the nature, construction, and transformations of projective
spaces. We will also discuss an important duality between points and lines, and con-
clude by showing that several classical geometries are embedded as subgeometries of
the projective plane.
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1 WHAT PROJECTIVE SPACE IS

1 What Projective Space Is

Imagine that a camera sitting at the origin of R3 looks out onto a crowd. The people at the
front of the crowd obscure the camera’s view of those at the back, and the resulting photo
shows only the projection of R3 onto the origin along the camera’s lines of sight. In other
words, each line of sight becomes a point in the plane of the photograph, and each plane
through the origin manifests as a line on the screen. The plane of the picture is a model of
the projective plane RP2, which we define as the geometry (in the sense of Klein) whose
points are (Euclidean) lines in R3 passing through the origin, and whose lines are (Euclidean)
planes in R3 through the origin.

One shortfall of physical cameras is that they project rays instead of lines. A physical
camera cannot see behind itself, but a mathematical camera can, and in the view of such
a camera, a crowd behind the origin would also be obscured “behind” the people in the
first row: the entire line of sight of the camera would be collapsed to a single point in the
photograph. So instead of a whole sphere’s worth of viewing angles, RP2 offers us half of
that: every point on the sphere is identified with its antipode. Mathematically, we say
that RP2 consists of the set of 1-dimensional subspaces of R3, or that it is R3 mod lines:
RP2 = R3/{`} ' S2/{±1}, where ` is any (Euclidean) line through the origin.

The notation RP2 suggests that other spaces RPn also exist. Let us briefly discuss RP1,
the set of lines in R2. This space is constructed by considering two points in R2 projectively
equivalent if they lie on the same line; metaphysically, RP1 is the Euclidean plane lost at sea,
with no notion of distance, caring only about direction. Since we care not for distances, we
need a consistent way to normalize the distance data of any point in the plane. One obvious
way is to divide the point’s coordinates by its distance from the origin; this obtains for us a
circle, but is too naive because it fails to identify p with −p. A better scheme is to consider
any line ` not passing through a given point O (the origin). Then the line joining O and
p has a unique intersection with `; this intersection is the projective point representing the
line Op. Almost all lines are accounted for in this way; the only troublemaker is the unique
line through O parallel to `. This line represents the projective point at infinity, which we
imagine as infinitely far along ` in both directions, joining it together and compactifying it
into a circle. Hence RP1 ' S1.

This philosophy extends to higher dimensions: choose a codimension-1 hypersurface
Rn−1 ⊂ Rn not passing through O and “projectivize” the lines through O to projective
points by considering their intersections with Rn−1, and then deal with what happens at
infinity by viewing the parallel hypersurface through O as a copy of RPn−1. This yields an
inductive construction of RPn which we will formalize in the next section.
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2 COORDINATES AND TRANSFORMATIONS

2 Coordinates and Transformations

2.1 Projective Coordinates

In the previous section, our construction of RP1 was obtusely Euclidean in that it made no
use of coordinates. Let us now introduce the standard Cartesian coordinates (x, y, z) on R3

and construct RP2 by explicitly giving the projective coordinates of any p = (x, y, z) ∈ R3.
As directed above, consider the plane z = 1 floating above the origin O = (0, 0, 0); we see
that p intersects this plane at coordinates [p] = [x

z
: y
z

: 1] ∈ RP2, where we have used square
brackets for added fanciness and colons to hint at the fact that projective coordinates are
ratios of the original coordinates. As in the construction of RP1 above, this scheme uniquely
projects almost all lines onto the plane z = 1. However, the lines in the plane of the origin
are problematic: they never intersect the plane z = 1, and moreover they have z = 0 which
makes their projective coordinates go to infinity. Evidently we supplant the ordinary plane
z = 1 with more points to make it behave projectively.

What should we add at infinity? We can deduce what shape to add by considering the
form that must be taken by the projective coordinates of a point p on the plane z = 0. If we
give p = (x, y, 0) the coordinates [p] = [x : y : 0], then we do not identify lines through the
origin as desired. To fix this, we simply projectivize the whole plane z = 0, i.e. fix projective
coordinates [p] = [x

y
: 1 : 0] on the plane, except for those points with y = 0 which have

coordinates [p] = [x : 0 : 0]. We see that we need to supply the plane z = 1 with an entire
copy of RP1, i.e. a circle, at infinity. This makes sense geometrically: a projective plane
should just be a plane fenced in by a circle, just as the projective line is in some sense a line
fenced in by a point at infinity.

In higher dimensions, the procedure is the same. Start with a huge space Rn+1 where
points have coordinates (x1, ..., xn+1). Consider the hyperplane xn+1 = 1, and intersect lines
through the origin with this hyperplane to get projective coordinates [ x1

xn+1
: ... : 1]. The

hyperplane xn+1 = 0 below consists of parallel lines which must be shoved in at infinity.
Our coordinate reasoning above suggests that we should view this hyperplane as a lower-
dimensional projective space. We therefore get a neat inductive construction:

RPn ∼= Rn+1/{`} ∼= Rn t RPn−1 =⇒ RPn =
n⊔

k=0

Rk. (2.1)

(N.B. For pedagogical ease, we have ignored an important technicality: we must remove
the origin itself from the definition of the projective space. Its projective coordinates are
undefined, and moreoever having an origin contradicts the “lost at sea” philosophy of the
projective world.)
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2.2 Projective Transformations 3 PROJECTIVE DUALITY

2.2 Projective Transformations

Recall that a geometry in the sense of Klein consists of a set and a group of transformations
acting on the set. We know that for Euclidean n-space the “full” transformation group is
the set GL(n,R) of invertible n × n matrices (plus translations by arbitrary vectors, if we
are working in Rn). What is the corresponding group of transformation matrices for RPn?

We already know the answer: projective transformations are the same as their Euclidean
counterparts, except that we should mod out by all of the matrices that act trivially on
projective space. Now two points p1, p2 are projectively equivalent if their coordinates satisfy
p1 = λp2 (i.e. they lie on the same line), so any scalar multiple of the identity necessarily
acts trivially on projective space. Moreover, this is the only type of matrix that acts trivially
because any other would not preserve the equivalence of points above.

We can formalize this construction by declaring two elements A,B ∈ GL(n,R) equivalent,
A ∼ B if and only if A = λB. Then the set Pr(n) = GL(n+1,R)/ ∼ of equivalence classes of
matrices is the proper transformation group of projective space. (It is easy to check that this
set actually forms a group.) This group is sometimes called the projective linear group
PGL(n,R), and is often defined by PGL(n,R) = GL(n,R)/Z(GL(n,R)), the general linear
group modulo its center. The center of a group consists of all elements that commute with
everything in the group, and it is a cute linear algebra exercise to show that Z(GL(n,R))
consists only of scalar multiples of the identity.

3 Projective Duality

In the Euclidean geometry of 3-dimensional space and multivariable calculus, many students
learn that every line uniquely determines a plane orthogonal to that line; likewise, every
plane determines a normal direction yielding this line. In projective geometry, this duality
between lines and planes in R3 is upgraded: every line becomes a point and every plane a
line, so points and lines are naturally dual to each other. In some sense, the question “is
there a 2-dimensional geometry where points and lines are naturally dual?” is answered
directly by the projective plane.

We could have predicted hints of this duality even in the Euclidean plane. For instance,
if we view the plane as consisting of a set of points, then a line is a particular subset of
those points; likewise, if we view the plane as consisting of the set of all lines, a point is just
a particular subset of those lines: namely, those that all intersect in a given point. Trying
to formulate “dual axioms” of Euclidean geometry by interchanging the roles of points and
lines, however, proves difficult.

To make the case for projective geometry, let us introduce the notion of incidence. We
say two lines `,m are incident at point P if they intersect at P , and points P and Q are
incident at line ` if ` passes through P and Q. In this language, we can formulate two
fundamental statements in projective geometry:

1. One and only one line is incident to two distinct points;

2. One and only one point is incident to two distinct lines.
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4 “PROJECTIVE GEOMETRY IS ALL GEOMETRY”

We see that exchanging “point” and “line” also exchanges statements 1 and 2, so a projec-
tive geometry where the meanings of point and line are exchanged is no different than the
geometry we have considered.

To formalize this claim, define the dual geometry to (RP2 : Pr(2)), denoted (RP2 :
Pr(2)), to be the geometry whose points are planes of R3 through the origin, and where the
“intersection” of two points (i.e. Euclidean planes) will be called the (dual-projective) line
passing through the points, which turns out to be a Euclidean line as well. We then have a
bombshell result:

Theorem 3.1 (Projective duality). The geometries (RP2 : Pr(2)) and (RP2 : Pr(2)) are

isomorphic: there is a bijection D : RP2 → RP2 compatible with the action of Pr(2).

Proof. In the spirit of Euclidean duality, note that the point [a : b : c] ' [a
c

: b
c

: 1] in RP2

naturally corresponds to (i.e. uniquely identifies) the dual “point” given by the Euclidean
plane ax+ by + cz = 0. Then construct D by sending [a : b : c] 7→ {ax+ by + cz = 0}. This
map is obviously bijective; it remains to show compatibility under the action of Pr(2). But
this is obvious: if some g ∈ Pr(2) sends [a : b : c] 7→ [a′ : b′ : c′], then in the dual geometry g
will send {ax+ by + cz = 0} 7→ {a′x+ b′y + c′z = 0}. Hence there is a commutative square
with D along the horizontals and g along the verticals proving compatibility.

Observe that the map D is an involution: applying D twice gets us back where we came
from, i.e. D2 = idRP2 . Moreover, it preserves the notion of incidence: if two points A,B are
incident to a line ` in RP2, then their images under D are lines D(A), D(B) incident to the

point D(`) in RP2. Therefore:

Corollary 3.2. There is a bijection between the set of lines and the set of points of RP2 that
preserves incidence and takes any theorem of RP2 geometry to a theorem of RP2.

4 “Projective Geometry is All Geometry”

We now present a wonderful and perhaps surprising fact about RP2: it “contains” the three
other continuous geometries we’ve studied. To formalize the notion of containment, recall
our definition of equivalent geometries: two geometries (X : G) and (Y : H) are equivalent
or isomorphic if (a) there is a bijection f : X → Y , (b) there is an isomorphism of groups
φ : G→ H, and (c) the bijection f is equivariant, i.e. it respects the group actions on both
geometries: for any g ∈ G and x ∈ X, f(g ·x) = φ(g) ·f(x). We can weaken this definition to
that of a subgeometry: now in addition to compatibility with the group action, we merely
require that f and φ be monomorphisms (i.e. injective).

We endeavor to sketch the proof of the following theorem:

Theorem 4.1. The following geometries are subgeometries of (RP2 : Pr(2)):

1. the Euclidean plane (R2 : Iso(2));

2. the hyperbolic plane (H2 : RMöb);

3. the elliptic plane (S2/{±1} : O(3)).
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4.1 The Euclidean Plane 4 “PROJECTIVE GEOMETRY IS ALL GEOMETRY”

Before we prove the theorem, we make a few remarks:

• Recall that we can view RP2 variously as the plane z = 1 in R3 supplied with a circle
(i.e. RP1) at infinity, or as a sphere of lines of sight with antipodal points identified.

• We will see that in the first view, the Euclidean plane simply comes from the “non-
infinity” part of RP2. Similarly, we will situate the Cayley-Klein model of hyperbolic
geometry inside the plane z = 1 by considering the unit disk in that plane.

• The elliptic plane has the same structure as RP2 in the second view; nevertheless, we
can also place the Riemann sphere on top of the plane z = 1 in the first view to show
that the elliptic plane fits neatly into projective space.

• The main difficulty proceeding forward will be to show that the transformation groups
of each model actually embed into Pr(2), and that their actions are compatible with
the inclusions we construct.

4.1 The Euclidean Plane

Let Π denote the plane z = 1 in R3, and let Λ∞ denote the circle at infinity surrounding it.
Then as sets RP2 = Π∪Λ∞, and R2 = Π ⊂ RP2. Therefore define the inclusion f : R2 ↪→ RP2

in the “obvious” way by f(x1, x2) = [x1 : x2 : 1].
We will construct a map φ̃ : Iso(2) → Pr(2) in the following way. Start with an element

g ∈ Iso(2) that maps some point p ∈ Π to g(p) ∈ Π. Then let φ(g) be the projective
transformation that drags the entire line connecting the origin O to p to the line connecting
O to g(p); in symbols, g : p 7→ g(p) =⇒ φ(g) : Op 7→ Og(p). It is obvious that f is injective,
and from the discussion of homogeneous coordinates above we can see that φ is also injective.
(Here Λ∞ remains untouched, so the correspondence is between lines passing through z = 1
exactly once, and their points of intersection.) It is also easy to see that φ(g1g2) = φ(g1)φ(g2)
and that the Iso(2)-action is respected by the inclusion f .

4.2 The Hyperbolic Plane

Once again, take our model of projective geometry to be RP2 = Π ∪ Λ∞. Recall that
the hyperbolic plane (H2 : RMöb) can be realized as the Cayley-Klein model (D2 : M),
where D2 is the open unit disk and M is the group of isometries with metric given by
d(A,B) = 1

2
| log(〈A,B,X, Y 〉)|. Situate D ⊂ Π ⊂ R3 as the open unit disk centered at the

point directly above the origin O on the plane z = 1, and define the map f : D2 ↪→ RP2 by
inclusion: f(x1, x2) = [x1 : x2 : 1].

To construct the monomorphism φ : M → Pr(2), start with an isometry g ∈M and four
points A,B,C,D ∈ D2 in general position (i.e. no three of them collinear). Under g, they
are sent to four other points gA, gB, gC, gD ∈ D2. Denote their inclusions in RP2 by

A1 = f(A), B1 = f(B), C1 = f(C), D1 = f(D);

A2 = f(gA), B2 = f(gB), C2 = f(gC), D2 = f(gD). (4.1)
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4.3 The Elliptic Plane 4 “PROJECTIVE GEOMETRY IS ALL GEOMETRY”

To define the transformation φ(g) ∈ Pr(2), recall that a unique projective transformation
g̃ ∈ Pr(2) takes four points in general position to four points again in general position. Since
g itself preserves general position, we may apply this fact to define φ(g) = g̃.

It is clear that f is injective, and by construction so is φ. We actually still need to verify
that φ(g) restricts to f(D2) ⊂ RP2 in a way that coincides with g. We omit the details,
but we will mention that this follows from the fact that projective transformations preserve
the cross-ratio of any four collinear points, and therefore preserve the distance d between
points in f(D2). But since g is an isometry, it must coincide with the restriction of φ(g) to
non-collinear points in f(D2), so it coincides globally. This proves the desired compatibility.

4.3 The Elliptic Plane

We mentioned above that both RP2 and the elliptic plane look like S2/{±1} as sets, so it is
clear that they are in bijection. However, we will still use the model RP2 = Π∪Λ∞ and place
a copy of the sphere S2 directly above it, so that the south pole touches the point directly
above O on Π. The map f : S2/{±1} ↪→ RP2 will be constructed by extending a diameter
through the sphere until it intersects Π; in this way every point and its antipode on S2 are
projected onto a unique point on Π ∪ Λ∞. In fact, lines on the elliptic plane—great circles
on the sphere—are projected to rectilinear lines on the projective plane, and the equator
parallel to z = 1 is mapped onto the projective line at infinity.

The construction of φ : O(3) → Pr(2) is somewhat involved, so we will omit the details.
In brief, however, it is almost identical to the construction for the hyperbolic plane. We start
by constructing four points A,B,C,D ∈ S2/{±1} and consider their images A′, B′, C ′, D′

under some transformation g ∈ O(3). After projecting these points and their images onto
RP2 and ensuring that they land in general position, we see again that there exists a unique
projective transformation φ(g) taking one set of projections to the other.

We leave as an exercise to show that this construction forces φ to be injective and com-
patible with group actions, so that the elliptic plane is indeed a subgeometry of RP2.
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